If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x^2)+6x-4320=0
a = 2; b = 6; c = -4320;
Δ = b2-4ac
Δ = 62-4·2·(-4320)
Δ = 34596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{34596}=186$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-186}{2*2}=\frac{-192}{4} =-48 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+186}{2*2}=\frac{180}{4} =45 $
| 0.x8+4/3x=x+10 | | (-12+x)/8=4 | | 1.5d=6 | | 3x-55=90 | | 2x7=17 | | 4(x+19)^2-30=610 | | 2/225+z=5/75 | | 3*3+3y=30 | | 4.7x-10.5=8.3 | | 3/2-3a/4=0 | | 2(3)-4y=-22 | | -3(-4)-y=-5 | | (5k-4)/3=7 | | 12x+17x-8+1=-5x+1-8 | | 16x+3=2(1/12x+3/2) | | y/9-18=52 | | y/9-15=5 | | 5b2-20b=b2 | | 5/2+3n=4/5n+12 | | 2x-17+23=117 | | 4x–5=7x+3 | | 5(-10.75-0.75)-8y=5 | | w/317+596=1639 | | 4x2=11 | | 10=4+x/19 | | 1/2+6=3/2(z+6) | | -4/9z=16/27 | | g/11+37=128 | | 5/8=m/16 | | 6x2+35x=19 | | -4=-6-2g | | k/8+21=97 |